10 research outputs found

    Detection of speech signal in strong ship-radiated noise based on spectrum entropy

    Get PDF
    Comparing the frequency spectrum distributions calculated from several successive frames, the change of the frequency spectrum of speech frames between successive frames is larger than that of the ship-radiated noise. The aim of this work is to propose a novel speech detection algorithm in strong ship-radiated noise. As inaccurate sentence boundaries are a major cause in automatic speech recognition in strong noise background. Hence, based on that characteristic, a new feature repeating pattern of frequency spectrum trend (RPFST) was calculated based on spectrum entropy. Firstly, the speech is detected roughly with the precision of 1 s by calculating the feature RPFST. Then, the detection precision is up to 20 ms, the length of frames, by method of frame shifting. Finally, benchmarked on a large measured data set, the detection accuracy (92 %) is achieved. The experimental results show the feasibility of the algorithm to all kinds of speech and ship-radiated noise

    Detection of speech signal in strong ship-radiated noise based on spectrum entropy

    Get PDF
    Comparing the frequency spectrum distributions calculated from several successive frames, the change of the frequency spectrum of speech frames between successive frames is larger than that of the ship-radiated noise. The aim of this work is to propose a novel speech detection algorithm in strong ship-radiated noise. As inaccurate sentence boundaries are a major cause in automatic speech recognition in strong noise background. Hence, based on that characteristic, a new feature repeating pattern of frequency spectrum trend (RPFST) was calculated based on spectrum entropy. Firstly, the speech is detected roughly with the precision of 1 s by calculating the feature RPFST. Then, the detection precision is up to 20 ms, the length of frames, by method of frame shifting. Finally, benchmarked on a large measured data set, the detection accuracy (92 %) is achieved. The experimental results show the feasibility of the algorithm to all kinds of speech and ship-radiated noise

    Neural blind beamformer for cyclostationary signals

    No full text

    Research for a Non-Standard Kenics Static Mixer with an Eccentricity Factor

    No full text
    The Kenics static mixer is one of the most widely studied static mixers, whose structure–function relationship has been studied by varying its aspect ratio and modifying the surface. However, the effect of the symmetric structure of the Kenics static mixer itself on twisting the fluid has been neglected. In order to study how the symmetrical structure of the Kenics static mixer impacts the fluid flow, we changed the center position of elements at twist angle 90° and introduced the eccentricity factor γ. We applied LHS-PLS to study this non-standard Kenics static mixer and obtained the statistical correlations of the aspect ratio, Reynolds number, and eccentricity factor on relative Nusselt number and relative friction factor. We analyzed the results by comparing the PLS model with the univariate analysis, and it was found that the underlying logic of the Kenics static mixer with an asymmetric structure became different. In addition, a non-standard Kenics static mixer with an asymmetric structure was investigated using vortex generation and dissipation through fluid flow simulation. The results demonstrated that the classical symmetric structure has a minor pressure drop, but the backward eccentric one has a higher thermal-hydraulic performance factor. It was found that the nature of the eccentric structure is that two elements with different aspect ratios are being combined at θ=90°, and this articulation leads to non-standard Kenics static mixers with different underlying logic, which finally result in the differences between the PLS model and the univariate analysis

    Adsorptive Desulfurization of Model Gasoline by Using Different Zn Sources Exchanged NaY Zeolites

    No full text
    A series of Zn-modified NaY zeolites were prepared by the liquid-phase ion-exchange method with different Zn sources, including Zn(NO3)2, Zn(Ac)2 and ZnSO4. The samples were tested as adsorbents for removing an organic sulfur compound from a model gasoline fuel containing 1000 ppmw sulfur. Zn(Ac)2-Y exhibited the best performance for the desulfurization of gasoline at ambient conditions. Combined with the adsorbents’ characterization results, the higher adsorption capacity of Zn(Ac)2-Y is associated with a higher ion-exchange degree. Further, the results demonstrated that the addition of 5 wt % toluene or 1-hexene to the diluted thiophene (TP) solution in cyclohexane caused a large decrease in the removal of TP from the model gasoline fuel. This provides evidence about the competition through the π-complexation between TP and toluene for adsorption on the active sites. The acid-catalyzed alkylation by 1-hexene of TP and the generated complex mixture of bulky alkylthiophenes would adsorb on the surface active sites of the adsorbent and block the pores. The regenerated Zn(Ac)2-Y adsorbent afforded 84.42% and 66.10% of the initial adsorption capacity after the first two regeneration cycles

    Mechanical properties and failure modes of CRCB specimen under impact loading

    No full text
    Abstract To explore the dynamic mechanical characteristics of CRCB specimens, a separated Hopkinson pressure bar (SHPB) test device combined with ultra-high-speed camera system was used to carry out the impact compression test on CRCB specimens. The stress wave propagation, dynamic stress–strain relationship, dynamic evolution of cracks, energy dissipation law and failure characteristics of the coal–rock combined body in the case of stress waves entering coal from rock were compared and analyzed. The influence of the difference between the rock and the incident bar on the propagation of stress wave gradually weakens with the increase of the impact velocity. The strength stress and peak strain of the CRCB specimens have obvious strain-rate effects. Besides, with increased impact velocity, the incident energy increases linearly, the reflected energy proportion decreases linearly and the absorbed energy proportion change approximately as a power function. Under the same stress wave, as the strength of the rock increases, the failure degree of coal gradually increases, the broken particles gradually transition from massive to powder and the rock mode changes from splitting failure to shear failure. As a result, the average particle size of broken coal blocks decreases, and the fractal dimension of CRCB specimens increases gradually. The research results provide basic research for the control of surrounding rock of roadway under dynamic pressure

    In situ and ex situ studies of anomalous eutectic formation in undercooled Ni–Sn alloys

    No full text
    Anomalous eutectic formation in undercooled Ni–Sn alloys was investigated by in situ X-ray diffraction and ex situ remelting and annealing experiments. Dynamic recrystallization and partial remelting of primary solids followed by repeated nucleation and growth of eutectic grains in the mushy zone were revealed by time-resolved X-ray diffraction. Ex situ experiments demonstrated that partial remelting of near-equilibrium solidified alloys of eutectic or near-eutectic composition can convert regular lamellar eutectic into anomalous eutectic, whereas high-temperature annealing of splat-quenched alloys of similar composition can convert eutectic or two-phase dendrites into anomalous eutectic. It is concluded that compared to ripening in solid-states, partial remelting of eutectic or two-phase dendrites in a mushy zone provides a more realistic mechanism for anomalous eutectic formation in undercooled solidification of Ni–Sn eutectic alloys
    corecore